Références

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390–397.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.

KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859. LAPASSET, J. (1972). Thèse, Montpellier.

- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- VIDAL, J. P., GALIGNÉ, J. L. & FALGUEIRETTES, J. (1972). Acta Cryst. B28, 3130-3137.
- VIDAL, J. P., LAPASSET, J. & FALGUEIRETTES, J. (1970). Rev. Chim. Minér. 7, 611–622.
- VIDAL, J. P., LAPASSET, J. & FALGUEIRETTES, J. (1972). Acta Crvst. B28, 3137-3144.

Acta Cryst. (1973). B29, 269

Les Hypovanadates MV₃O₇ (M=Ca, Sr, Cd). Structure Cristalline de CaV₃O₇

PAR JEAN-CLAUDE BOULOUX ET JEAN GALY

Service de Chimie Minérale Structurale de l'Université de Bordeaux I, associé au C.N.R.S., 351 cours de la Libération, 33-Talence, France

(Recu le 24 juillet 1972, accepté le 20 octobre 1972)

The phases MV_3O_7 with M = Ca, Sr, Cd, are isostructural. The structure type has been determined by the X-ray single-crystal method on CaV_3O_7 which crystallizes in the orthorhombic system, space group *Pnam* with the parameters a = 10.459, b = 5.295 and c = 10.382 Å. The layer structure is built up from subunits of three square pyramids, VO_5 , sharing edges: the subunits are linked in the y direction by edges. The calcium atoms are inserted between the layers. The solid solution $Ca_{1-x}Sr_xV_3O_7$ has been investigated in order to determine the influence of the size of the M^{2+} cation on the stability of the structure. The stereochemistry of vanadium(IV) is discussed.

La cristallochimie des phases contenant du vanadium au seul degré d'oxydation (IV) a fait l'objet d'un nombre limité d'investigations structurales approfondies mises à part quelques phases de type spinelle ou pérovskite. Dans le cadre des recherches effectuées au laboratoire sur les systèmes ternaires $MO-V_2O_5-VO_2$ (M = Ca, Sr, Ba, Cd) (Galy & Bouloux, 1967; Bouloux & Galy, 1969; Perez, Frit, Bouloux & Galy, 1970; Bouloux, Perez & Galy, 1972), nous avons été amenés à préciser la nature et les données structurales d'un certain nombre d'hypovanadates notamment CaV₃O₇, SrV₃O₇ et CdV₃O₇.

Deduit (1961) avait signalé l'existence d'un hypovanadate de calcium de formule CaV_3O_7 préparé à 900 °C par action de la chaux CaO sur le dioxyde de vanadium VO₂; il attribue à cette phase un domaine d'homogénéité correspondant à des rapports molaires CaO/VO₂ compris entre 0,26 et 0,42.

La phase CdV_3O_7 avait été préparée par Reuter & Müller (1969) lors de l'étude du système $CdO-VO_2$ par interaction à 700 °C des oxydes CdO et VO_2 . Ces auteurs en donnaient le spectre de diffraction X sans en préciser les caractères cristallographiques.

Synthèse des phases MV_3O_7 (M = Ca, Sr, Cd)

Les phases CaV_3O_7 et SrV_3O_7 ont été préparées à 900°C en tube de Vycor scellé sous vide par action des oxydes CaO ou SrO sur l'oxyde de vanadium VO₂:

CaO (ou SrO) +
$$3VO_2 \rightarrow CaV_3O_7$$
 (ou SrV₃O₇).

 CdV_3O_7 s'obtient à 750 °C par action du cadmium métallique sur un mélange stœchiométrique des oxydes V_2O_5 et V_2O_3 . La réaction est effectuée en 12 heures en tube de Vycor scellé sous vide:

$$4Cd + 5V_2O_5 + V_2O_3 \rightarrow 4CdV_3O_7$$

Les produits obtenus sont trempés après réaction.

Les spectres X de ces trois phases présentent de grandes analogies, laissant prévoir leur isotypie (Tableau 1).

Le spectre X de la phase CaV_3O_7 donné par Deduit est très incomplet (réflexions marquées d'un astérisque); par ailleurs le domaine d'homogénéité annoncé n'a pas été retrouvé.

 CaV_3O_7 et SrV_3O_7 possèdent des points de fusion non congruente vers 1150 °C et 1020 °C respectivement.

Le spectre X de CdV_3O_7 est en bon accord avec celui des auteurs précédents. CdV_3O_7 se décompose dès 850 °C avec volatilisation de cadmium métallique et formation de pyrovanadate $Cd_2V_2O_7$ et d'oxyde VO_2 :

$$3$$
CdV₃O₇ \rightarrow Cd₂V₂O₇ + 7VO₂ + Cd

Remarque: Malgré des essais répétés, il n'a pas été possible de préparer un hypovanadate de baryum $BaV_{3}O_{7}$.

STRUCTURE CRISTALLINE DE CaV₃O₇

Tableau 1. Spectres X des trois phases

CaV ₃ O ₇					SrV ₃ O ₇				CdV ₃ O ₇			
h k l	d _{obs} (Å)	d_{calc} (Å)	I/Io	h k l	$d_{\rm obs}({ m \AA})$	d_{calc} (Å)	I/Io	h k l	d _{obs} (Å)	d_{calc} (Å)	I/Io	
$\begin{array}{ccc} 2 & 0 & 0 \\ 2 & 0 & 2 \end{array}$	5,25* 3,69	5,229 3,684	78 7	200 (110)	5,31	5,303 4,741	43	$\left\{ \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & 2 \end{array} \right.$	5,15	5,164 5,149	36	
$\begin{cases} 2 \ 1 \ 1 \\ 1 \ 1 \ 2 \end{cases}$	3,50*	3,503	27	$\begin{cases} 2 & 0 & 1 \\ 0 & 1 & 1 \end{cases}$	4,73	4,735	9	$\begin{cases} 1 \ 1 \ 0 \\ 0 \ 1 \ 1 \end{cases}$	4,71	4,710	24	
212	3,023*	3,024	100		3,73	3,735	16		4.61	4,707	22	
013	2,902	2,897	14	∫ 2 1 1	3 570	3,531	20	2 1 0	3,69	3,696	5	
203	2,886	2,886	2	(112)	5,529	3,522	50	202	3,65	3,646	17	
3 1 1	2,799	2,803	2	(212)	3,050	3,053	100	$\begin{cases} 2 \ 1 \ 1 \\ 1 \ 1 \ 2 \end{cases}$	3.475	3,478	50	
400	2,031*	2,047	10		2,927	2,920	5	$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix}$	2 001	3,475	100	
004	2,593	2,595	15	400	0 (17	2,651		203	2.861	2 859	12	
∫401	2 522*	2,535	11	{020	2,647	2,650	33	$\frac{1}{1}$ $\frac{1}{3}$	2,773	2,774	4	
213	2,333	2,534	11	004	2,631	2,631	16	020	2,646	2,646	26	
410	2,343	2,344	8	1401	2,571	2,571	14	400	2,582	2,582	19	
411	2,285	2,287	5	$\begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & 2 \end{bmatrix}$	2 563	2 567	17	(212)	2,563	2,563	10	
403	2,130	2.086	5	$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$	2,505	2,561	17	1 2 1 3	2,517	2,517	12	
$\int 322$	1.051	1,953	-	j́410	2,372	2,371	14	401	2,498	2,504	12	
223	1,951	1,951	4	220		-		∫ 2 2 0	2 354	2,355	2	
$\begin{bmatrix} 4 & 1 & 3 \\ 2 & 1 & 4 \end{bmatrix}$	1,939*	1,941	6	1411	2,314	3,313	5		2,354	2,353	-	
		1,937		$\begin{bmatrix} 2 & 2 & 1 \\ 4 & 1 & 2 \end{bmatrix}$		2162		410	2,315	2,320	14	
1205	1,930	1,930	5		2,161	2,161	10	222	2,239	2,239	3	
024	1,854*	1,853	20	403	2,116	2,115	10	4 1 2	2,115	2,116	6	
421	1,830	1,831	11	$\begin{cases} 4 \ 1 \ 3 \\ 2 \ 2 \ 3 \\ 3 \ 3 \$	1 964	1,964	7	3 2 0	2,096	2,098	3	
124	1,824	1,825	2		1,201	-	,	403	2,062	2,063	10	
$\begin{bmatrix} 3 & 1 & 2 \\ 4 & 2 & 2 \end{bmatrix}$,	1,822			1,957	1,956	ð	322	1,942	1,943	10	
$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 4 \end{bmatrix}$	1,748*	1,747	10	420	1.874	1.874	6	$\begin{bmatrix} 2 & 2 & 3 \\ 5 & 1 & 0 \end{bmatrix}$		1,942		
130		1,740		∫ 4 0 4	1 967	1,868	20	4 1 3	1,923	1,922	14	
{031	1,740		9	024	1,007	1,867	20	420	1,848	1,849	24	
$\begin{bmatrix} 4 & 1 & 4 \\ 1 & 2 & 1 \end{bmatrix}$	1 71/4	-	•	421	1,845	1,845	10	$\begin{cases} 4 2 1 \\ 1 2 1 \end{cases}$	1.817	1,819	16	
$\begin{bmatrix} 1 & 3 & 1 \\ 6 & 0 & 2 \end{bmatrix}$	1,/10*	1,/10	2		1 835	1,844	Л	$\begin{bmatrix} 1 & 2 & 4 \\ 4 & 2 & 2 \end{bmatrix}$	-,	1,816		
$\begin{cases} 2 & 3 & 1 \\ 2 & 3 & 1 \end{cases}$	1.651*	1,651	10	[4]4	1,055	1,055	-			1,739	_	
132	, -	1,650		[224	1,/61		17	031	1,738	-	7	
∫405	1.625*	1,626	5	$\int 2 3 0$	1.674	1,676	6	224		1,738		
116	1.621	1,625	5	602	1,071	1,675	Ŭ	$\int 4 1 4$	1.723	1,724	12	
221 232	1,021	1,021	5	2611	1 656	1,000	5		-,	1,/21		
$\begin{bmatrix} 2 & 3 & 2 \\ 6 & 1 & 2 \end{bmatrix}$	1,572	1,572	10		1,050	1.655	5	1 2 3 1 1 1 3 2	1,647	1,647	6	
1330	1,575	1,575	12] 1 3 2	1 652	1,654	7	206		1,629		
$\begin{bmatrix} 3 & 3 & 1 \\ 2 & 3 & 1 \end{bmatrix}$		1,577		$\begin{bmatrix} 4 & 2 & 3 \\ 2 & 2 & 4 \end{bmatrix}$	1,055	1,653	'	{ 5 2 0	1,628	1,628	10	
603	1 555	-	•		1,649	1,651	8			1,627		
1 1 2 2	1,333	1 555	3	1403		1,648			1,611	1,612	11	
415		1,554			1,598	1,590	30	(403	1.588	1,588	7	
(· - •		-,			1,588	1,589	8		1,560	1,560	ģ	
						•		2 1 6	1,557	1,557	14	

Tableau 2. Données cristallographiques

				Ca _{1-x}	Sr _x V ₃ O ₇
	CaV_3O_7	SrV ₃ O ₇	CdV ₃ O ₇	x = 0,40	x = 0,70
Paramètres $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ V (en Å ³) den	$10,459 \pm 0,008 \implies 5,295 \pm 0,005 = 10,382 \pm 0,008 = 574,9 = 3,52 + 0,03$	$\begin{array}{c} 10,606 \pm 0,008 \\ 5,300 \pm 0,005 \\ 10,523 \pm 0,008 \\ 591,5 \\ 3.94 \pm 0.03 \end{array}$	$10.328 \pm 0,008 \\ 5,292 \pm 0,005 \\ 10,298 \pm 0,008 \\ 562,8 \\ 4,44 \pm 0,04$	$\begin{array}{c} 10,\!474\pm\!0,\!008\\ 5,\!296\pm\!0,\!005\\ 10,\!451\pm\!0,\!008\\ 579,\!7\end{array}$	$\begin{array}{c} 10,510 \pm 0,008 \\ 5,296 \pm 0,005 \\ 10,496 \pm 0,008 \\ 584,2 \end{array}$
$d_{\mathbf{x}}$	3,53	3,96	4,45	3,71 4	3,85 4
Test de piézoélectricité Groupe spatial	 Pnam	+ Pna2 ₁	+ Pna21	+ Pna2 ₁	+ Pna 2_1

Obtention et étude radiocristallographique d'un monocristal de CaV₃O₇

L'hypovanadate CaV_3O_7 introduit dans une nacelle de platine est placé à l'intérieur d'un tube-laboratoire; l'atmosphère, parfaitement contrôlée, est constituée d'argon pur. Lorsqu'on maintient CaV_3O_7 à la fusion pendant un laps de temps d'environ 15 mm, la décomposition n'est pas totale. Un refroidissement lent permet d'obtenir quelques cristaux. Nous avons pu isoler un petit monocristal de couleur brun foncé, et de forme parallélépipédique, de dimensions $0,02 \times 0,03 \times 0,05$ mm.

Les diagrammes de Laue révèlent une symétrie orthorhombique. Les diagrammes de Bragg et les rétigrammes effectués selon l'axe *Oy* ont permis de déterminer les paramètres cristallins; ces derniers ont été précisés par indexation du spectre de poudre et affinement par moindre carrés (Tableau 2).

Les conditions d'existence relevées sur les rétigrammes:

$$\begin{array}{lll} 0 \ k \ l & k+l=2n \\ h \ 0 \ l & h=2n \end{array},$$

sont compatibles avec les deux groupes spatiaux *Pnam* ou D_{2h}^{16} et *Pna2*₁ ou C_{2v}^{9} .

La densité mesurée par pycnométrie dans l'o-phtalate de diéthyle ($d_{exp} = 3,52 \pm 0,03$) implique 4 motifs CaV₃O₇ par maille ($d_x = 3,53$).

Les spectres X de SrV_3O_7 et CdV_3O_7 ont pu être indexés par isotypie avec CaV_3O_7 , permettant ainsi de préciser les données cristallographiques de ces phases. L'ensemble de ces résultats figure au Tableau 2.

Détermination de la structure de CaV₃O₇

Les intensités des diverses réflexions hkl obtenues à l'aide d'une chambre de Weissenberg intégrante ont été mesurées visuellement par comparaison avec une échelle photographique (plan h0l à h4l et hk0), puis ramenées à une échelle unique. Le rayonnement K α utilisé provenait d'une anticathode de cuivre (filtre Ni).

Les facteurs de diffusion relatifs au calcium, au vanadium et à l'oxygène sont tirés des Tables de McMaster, Kerr del Grande, Mallet & Hubbel (1969). Ceux du calcium et du vanadium ont été corrigés du facteur de dispersion anomale.

La correction par le facteur de Lorentz-polarisation a été effectuée.

Les calculs ont été réalisés sur IBM 360-44 à l'aide de programmes mis au point par Saux et Galy; pour les derniers cycles d'affinement, une adaptation du

Tableau 3. Coordonnées réduites et paramètres d'agitation thermique dans CaV_3O_7

	$x(\sigma x)$	$y(\sigma y)$	$z(\sigma z)$	$B(Å^2)(\sigma B)$	Positions
Ca	0,4156 (9)	0,2011(18)	고	0,76 (16)	4(c)
V(1)	0,1876(5)	0,2170 (9)	0,0205(5)	0,68 (12)	8(d)
V(2)	0,2111 (7)	0,7082 (15)	14	0,64 (16)	4(c)
O(1)	0,280 (2)	0,474 (5)	0,119 (2)	0,84 (44)	8(d)
O(2)	0,274 (2)	0,951 (5)	0,119 (3)	0,73 (44)	8(d)
O(3)	0,042 (2)	0,232 (6)	0,065 (2)	1,18 (47)	8(d)
O(4)	0,061 (4)	0,698 (8)	1/2	1,30 (74)	4(c)

Fig. 1. Projection de la structure de CaV_3O_7 sur le plan xOz.

programme de Busing, Martin & Levy (1962) a été utilisée.

Deux groupes spatiaux étaient possibles, l'un centrosymétrique *Pnam*, l'autre non centrosymétrique *Pna2*₁. Le test de Howells, Phillips & Rogers (1950) apparaissait favorable au groupe *Pnam* centrosymétrique. La déconvolution de la fonction de Patterson P(uvw) a permis de déterminer les coordonnées réduites des atomes 'lourds', le calcium et les deux atomes de vanadium:

- Ca: position à 4 équivalents 4(c): $xy_{\frac{1}{4}}$
- V(1): position à 8 équivalents 8(d): xyz
- V(2): position à 4 équivalents 4(c): $xy\frac{1}{4}$

A l'aide de ces coordonnées réduites, un calcul de facteurs de structure fait ressortir un assez bon accord entre F_o et F_c : l'indice de reliabilité est R=0,27.

Les coordonnées réduites des quatre atomes d'oxygène en positions indépendantes ont été déduites de la densité électronique obtenue par application de la méthode de l'atome lourd [Ca + V(1) + V(2)]. L'indice *R* est alors de: R=0,14.

Affinement de la structure

Après plusieurs cycles d'affinement à l'aide d'une méthode utilisant les blocs diagonaux, l'indice R descend jusqu'à la valeur R=0,085 pour l'ensemble des 347 réflexions *hkl* observées. Un calcul tenant compte des paramètres d'agitation anisotrope n'améliore pas ce résultat.

Finalement, trois cycles d'affinement avec la matrice complète donnent un indice R final de: R=0.081.

Les coordonnées réduites et les facteurs d'agitation thermique isotrope des atomes sont portés au Tableau 3, les distances interatomiques au Tableau 4 et les facteurs de structure observés et calculés au Tableau 5.

Tableau 4. Distances interatomiques dans CaV_3O_7 (erreur maximale $\pm 0,03$ Å)

$\begin{array}{l} 2\text{CaO(1)} \\ 2\text{CaO(2'')} \\ 2\text{CaO(3')} \\ \text{CaV(1)} \\ \text{CaV(2)} \\ \text{CaV(2)} \\ \text{CaV(2)} \\ \text{V(1)V(2)} \\ \text{V(1)V(2)} \\ \text{V(1)V(2)} \\ \text{V(1)O(1)} \end{array}$	2,44 2,40 2,36 2,60 3,37 3,43 4,06 3,53 2,98 3,00 1,96	2V(2) - O(1) 2V(2) - O(2) V(2) - O(4) O(1) - O(2'') O(1') - O(2''') O(1) - O(2''') O(3) - O(1) O(3) - O(2'') O(3) - O(2'') O(3) - O(1'') O(3) - O(1'')	1,97 1,98 1,57 2,77 2,53 2,55 2,55 2,85 2,90 2,95 2,99
$\begin{array}{c} Ca - V(1') \\ V(1) - V(2) \\ V(1) - V(2) \\ V(1') - V(2) \\ V(1') - V(2) \\ V(1) - O(1) \\ V(1) - O(1'') \\ V(1) - O(1'') \\ V(1) - O(2''') \\ V(1) - O(3) \end{array}$	4,06 3,53 2,98 3,00 1,96 1,96 1,97 1,95 1,59	$\begin{array}{c} O(1) - O(2') \\ O(2') - O(1'') \\ O(3) - O(1) \\ O(3) - O(2'') \\ O(3) - O(2'') \\ O(3) - O(2'') \\ O(3) - O(1') \\ 2O(1) - O(2) \\ 2O(1) - O(1) \\ 2O(4) - O(1) \\ 2O(4) - O(2) \end{array}$	2,55 2,85 2,90 2,95 2,99 2,53 2,72 2,91 2,93

Description de la structure

Nous avons représenté à la Fig. 1 la projection du réseau de CaV_3O_7 sur la plan xOz.

Chaque atome de vanadium est entouré de cinq atomes d'oxygène formant une pyramide de base carrée parallèle à l'axe Oy. Les pyramides V(1)–O₅ et V(1')–O₅ opposées l'une à l'autre forment des chaînes

Fig. 2. Vue idéalisée de CaV₃O₇ en perspective.

Fig. 3. Environnement du calcium dans CaV₃O₇.

Fig. 4. Schématisation des feuillets $(V_3O_7)_n^{2n-}$ avec distorsion (angle α) et sans distorsion ($\alpha = 0$).

en zıgzag parallèles à l'axe Oy par mise en commun d'une arête parallèle au plan xOz. Ces chaînes de formule $(VO_3)_n^{2n-}$ sont reliées par l'intermédiaire de pyramides V(2)–O₅. On obtient ainsi la formation de feuillets plissés de composition $(V_3O_7)_n^{2n-}$, parallèles au plan yOz, se répétant dans la direction Ox avec une périodicité a/2. La Fig. 2 représente une vue idéalisée en perspective de la structure. Les atomes de calcium situés entre les feuillets assurent la cohésion de la maille. Le calcium occupe le centre d'un prisme oxygéné à base triangulaire dont l'axe est parallèle à Oz(Fig. 3); notons la présence d'un septième oxygène O(4') à une distance Ca-O(4') = 2,60 Å supérieure aux six autres liaisons (Ca-O=2.36, 2.40 et 2.44 Å).

Discussion

Les hypovanadates MV_3O_7 (M = Ca, Sr, Cd)

La connaissance de la structure de CaV₃O₇ permet de tirer quelques conclusions quant à celle de ses homologues SrV_3O_7 et CdV_3O_7 .

Cette structure permet de comprendre que le paramètre b soit identique dans les trois cas; il correspond à un empilement d'atomes d'oxygène suivant l'axe Oy. L'augmentation des paramètres a et c, lorsqu'on passe du calcium au strontium, s'explique par leur différence de taille ($r_{Ca2+} = 0.99$ Å, $r_{Sr2+} = 1.12$ Å (Ahrens, 1952). Le strontium en s'insérant entre les feuillets écarte ceux-ci, entraînant une augmentation du paramètre a; il repousse également les oxygènes O(3') et O(3''), redressant ainsi les feuillets en entraînant un

allongement du paramètre c. L'angle α que forment entre elles les bases oxygénées des pyramides diminue donc lorsque la taille du cation inséré augmente (Fig. 4). A partir de la valeur moyenne $(O-O)_m$ des arêtes constituant la base de la pyramide VO_5 :

$$(O-O)_m = \frac{[(O(1)-O(1')] + [O(1'') - O(2'')]}{2} = 2,63 \text{ Å}$$

et de l'angle α , on peut exprimer le paramètre c:

$$c = 4 (O-O)_m \cos \alpha = 10,52 \cos \alpha \text{ Å}$$

Pour CaV₃O₇ c = 10,382 Å, d'où un angle α de l'ordre de 10°.

La valeur maximale du paramètre c correspondra à $\alpha = 0^{\circ}$: $c_{\text{max}} = 10,52$ Å (Fig. 4). Le paramètre c déterminé pour la phase SrV_3O_7 étant de 10,523 Å, soit une valeur proche de 10,52 Å, on peut imaginer raisonnablement que l'introduction d'un cation plus volumineux comme le baryum entraîne la disparition de la maille. Effectivement, la phase BaV_3O_7 n'existe pas et les essais effectués en vue de substituer quelques atomes de baryum au strontium, au calcium ou au cadmium n'ont pas été concluants.

L'évolution des paramètres de la solution solide $Ca_{1-r}Sr_{r}V_{3}O_{7}$ confirme ces conclusions. Le paramètre a croît continuement en fonction de x, alors que c tend manifestement vers une valeur limite: c = 10,52 Å (Fig. 5).

Notons enfin, dans le cas du cadmium, la valeur sensiblement plus faible des paramètres a et c par com-

Tableau 5. Facteurs de structure observés et calculés

R K L 10 0 0 8 0 0 6 0 0	Fa 159 247 35	K7c E 147.3 6 244.0 8 39.6 4 188.7 6	K L 1 10 1 19 1 9	70 62 82 72	KPc H K L 66.7 3 1 11 80.4 2 1 11 69.8 1 1 11 83.0 0 1 11	70 29 155 33 109	K7c 33.4 154.5 29.0 105.3	BKL 712 812 1012 1112	Fo 59 101 89 21	K7c 60.1 103.7 84.3 24.3	F K L 4 Z 4 3 2 4 2 2 4 1 2 4	Po 80 50 268 236	KPc 76,7 41,9 236,0 201,3	HKL 436 536 736 836	Po 103 50 96 75	KFe 103.1 52.4 102.1 75.3
201 401 601 801	14 67 95 59	11.5 77.4 95.8 52.7	18 18 18	27 62 103 19	23.3 1 1 10 60.8 2 1 10 104.6 4 1 10 16.2 3 1 1	19 101 39 35	22.9 96.0 40.8 42.6	$12 1 1 \\ 6 1 1 \\ 4 1 1 \\ 2 2 6 \\ 0 2 6$	105 31 89 105 60	85.1 31.3 105.2 95.1 54.8	024 225 325 425 525	492 75 48 127 90	454.1 70.7 45.6 129.1 90.7	935 835 535 435 335	49 59 19 39 74	39.5 61.7 17.3 42.2 71.0
10 0 1 12 0 2 8 0 2 6 0 2 2 0 2	42 15 88 209 119	34.6 6 10.2 7 85.8 8 234.4 8 109.7 7	5 1 6 7 1 8 3 1 8 3 1 7 7 1 7	41 23 67 95 39	45.5 2 1 1 25.1 1 1 69.0 2 1 0 102.9 3 1 0 38.2 4 1 0	138 15 36 31 165	15.3 43.4 33.1 188.7	1 2 7 2 2 7 5 2 7 6 2 7	26 74 37 28	30.2 69.7 36.3 29.9	6 2 5 8 2 5 8 2 6 6 2 6 5 2 6	319 41 19 108 57	131.3 36.0 20.9 119.7 56.2	235 135 035 134 334	45 13 89 57 60	41.9 15.5 77.7 46.3 51.9
002 203 403 603 803	51 77 169 78 92	39.7 - 6 68.0 4 181.7 3 84.5 2 93.8 1		100 90 39 195 41	109.5 5 1 0 84.5 6 1 0 39.0 7 1 0 177.9 8 1 0 39.4 9 1 0	51 79 27 158 24	53.0 82.8 27.1 149.1 24.2	927 828 428 228	41 98 46 39	44.7 88.1 43.7 43.5	326 534 734 834	50 70 52 53	49.9 78.3 58.2 57.1 41.5	434 040 441 541	108 244 31 87	115.3 257.4 29.3 89.3 33.6
1003 1004 804 604	147 149 199 56 83	139.3 0 134.3 1 208.8 2 56.0 3 84.3 4	1 6	202 48 213 43 139	184,8 10 1 0 40,7 12 1 0 195,8 10 2 0 39,1 9 2 0 136,4 8 2 0	69 142 122 111 232	61.9 112,7 107.7 101.5 219.7	1 2 8 0 2 8 2 2 9 3 2 9 4 2 9	59 114 76 69 194	53.9 106.1 72.0 67.4 195.0	8 3 3 7 3 3 6 3 3 4 3 3	51 73 44 78	53.3 73.8 47.8 81.9	8 4 2 7 4 2 6 4 2 5 4 2	67 101 75 79	59, 5 98, 5 80, 2 84, 2 62, 2
204 004 205 405 605	39 332 147 235 215	35.1 6 299.2 7 134.1 8 235.2 10 243.1 9	1 6	118 37 110 76 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74 81 35 54 83	70.9 72.7 43.7 68.9 116.6	5 2 9 6 2 9 7 2 9 5 2 10 4 2 10	94 113 32 36 29	97.2 127.2 31.8 39.2 24.0	2 3 3 J 3 3 O 3 3 I 3 2	93 105 163 161	86,1 90,6 145,0 145,5	2 4 2 0 4 2 1 4 3 2 4 3	30 71 47 23	35.0 62.6 43.8 27.4
8 0 5 10 0 5 8 0 6 6 0 6 4 0 6	19 77 19 154 49	25.2 8 60.0 4 23.2 3 168.0 2 41.2 0	1 5	73 66 34 70	77.9 0 2 0 65.3 2 2 1 32.1 3 2 1 63.4 4 2 1 140.5 5 2 1	358 54 43 135 106	372.6 61.0 53.2 161.8 114.8	1 2 10 0 2 10 1 2 11 2 2 11 3 2 11	44 100 26 76 37	42.8 101.2 26.3 76.0 35.0	3 3 2 4 3 2 5 3 2 6 3 2	112 95 75 154	122.0 112.7 85.9 162.2	543 743 843 844	74 29 44 90	86.2 33.2 46.5 84.7
206 006 207 407	97 152 147 57	83.6 1 136.7 2 135.7 3 52.2 4 50.8 7		38 28 14 182	32.6 6 2 1 26.3 7 2 1 13.6 8 2 1 183.5 9 2 1	170 42 44 28	167,9 42,7 42,8 30,7 86,9	1 3 10 2 3 10 3 3 10 4 3 9 3 3 9	51 55 38 32 33	51,3 56,5 39,9 38,0 33,2	7 3 2 8 3 2 10 3 2 9 3 1 7 3 1	57 58 26 19	56, 5 55, 7 23, 0 22, 6	6 4 4 3 4 4 2 4 4 1 4 4	40 28 50 141	41.9 33.7 46.1 131.5
807 1007 808 608	33 93 88 48	30.7 8 84.1 9 90.4 10 51.9 8		- 109 19 75 83	115.1 11 2 1 19.8 8 2 2 65.3 7 2 2 88.4 6 2 2	62 86 72 172	49.6 80.4 72.6 184.7	239 139 039 138 438	29 35 64 56	27.6 36.1 63.3 54.6 62.5	631 431 231 131 031	19 36 54 15 24	22,8 40.7 64.0 16.5 20,4	044 245 345 445 545	108 61 93 81 -142	59.4 91.3 83.5 158.5
4 0 8 2 0 8 0 0 8 2 0 9 4 0 9	197 309 69 196	179.5 6 286.4 4 65.1 3 203.7 2	1 3	87 129 44 122	25.6 5 2 2 98.0 5 2 2 125.9 2 2 2 43.8 1 2 3 108.3 2 2 3	54 126	52,4 63,6 50,1 116,4	638 638 738 837 737	72 33 69 77 70	22.5 34.1 69.9 80.2 76.3	1 3 0 2 3 0 3 3 0 4 3 0 5 3 0	30 35 34 89 74	39.0 47.0 41.0 98.7 79.6	645 746 646 546	90 60 58 49 77	46,7 59,7 59,8 60,3 84,8
6 0 10 2 0 10 0 0 10 2 0 11	64 36 97 62	72.5 0 35.7 1 92.4 2 62.0 3	1 3 1 2 1 2 1 2	259 93 354 53	37.3 42 3 222.7 5 2 3 81.9 6 2 3 379.2 10 2 3 55.0 11 2 3	24 34 49 44	25, 2 41, 2 47, 1 34, 1	637 437 337 237 137	72 42 89 110 89	79.8 38.8 87.5 100.9 82.3	630 730 830 930 1030	57 81 111 74 66	53. ? 76. 3 100. 7 66. 9 60. 8	346 246 146 147 247	39 31 34 52 57	43, 8 35, 3 34, 4 54, 4 54, 7
0 0 12	25 70	24.0 4 73.4 9 6	1 2	31 235	37,2 92 4 262.6 8 2 4 7 2 4 5 2 4	94 146 27 43	87, 8 147, 4 24, 7 48, 7	0 3 7 1 3 6 2 3 6 3 3 6	117 99 119 96	111.4 86.1 113.3 92.9	940 840 740 540 540	154 114 69 19 67 50	1 37, 3 1 04, 0 6 3, 2 22, 4 6 8, 0 5 4, 2	3 4 7 4 4 7 6 4 7 3 4 8 2 4 8 3 4 8	50 33 28 33 85 155	47.4 35.9 34.2 35.5 83.3 147.7
											340	50 89 2 15	56.1 109.4 282.9	249	97 33	38.5

paraison avec ceux de CaV₃O₇; elle peut être raisonnablement attribuée au caractère plus polarisant du cadmium, sa taille plus faible ($r_{Cd2+} = 0.97$ Å) ne jouant qu'un rôle secondaire.

Etude piézoélectrique des phases MV_3O_7 (M=Ca, Sr, Cd (et de la solution solide $Ca_{1-x}Sr_xV_3O_7$

Le test de piézoélectricité est négatif dans le cas de CaV_3O_7 . Ce fait est en accord avec l'étude structurale qui avait permis de retenir le groupe spatial *Pnam*.

Par contre, ce test est positif pour toutes les autres phases; leur structure est donc non-centrosymétrique, le groupe spatial sera $Pna2_1$. Ces résultats sont groupés au Tableau 2.

Cet abaissement de symétrie constaté lors de l'accroissement de la taille du cation M^{2+} pourrait s'expliquer par une distorsion intervenant au niveau de l'ensemble Ca-O(4')-V(2') (O(4') est le septième atome du polyèdre de coordinence entourant le calcium). Dans le cas du strontium par exemple la distance Sr-O(4') doit diminuer fortement si les six autres distances Sr-O restent à peu près égales à la somme des rayons ioniques comme dans le cas du calcium.

Il s'en suit que ces trois atomes Sr, O(4') et V(2') ne peuvent plus coexister dans le miroir perpendiculaire à l'axe Oz, entraînant ainsi le passage au groupe spatial $Pna2_1$.

Coordinence pyramidale à base carrée du vanadium(IV)

La coordinence 5 du vanadium(IV) apparaît sous deux formes:

- bipyramidale à base triangulaire, par exemple dans les bronzes de vanadium LiV_2O_5 (Galy & Hardy, 1965; Hardy, Galy, Casalot & Pouchard, 1965; Galy, Darriet & Hagenmuller, 1971) et NaV_2O_5 (Galy, Casalot, Pouchard & Hagenmuller, 1966).

- pyramidale à base carrée, dans VOSO₄ α (Longo & Arnott, 1970), NaV₂O₄F (Carpy & Galy, 1971), TeVO₄ β (Meunier, Darriet & Galy, 1972) et K₂V₃O₈ (Galy, communication privée). Cette dernière coordinence est relativement rare. Nous avons groupé au Tableau 6 afin de les comparer, les différentes liaisons V-O ou V-(O,F) dans VOSO₄ α , NaV₂O₄F, TeVO₄ β et CaV₃O₇. La liaison V-O la plus courte est celle qui correspond à l'oxygène du sommet de la pyramide. Les quatre autres distances sont équivalentes, la distance moyenne V-O étant de 1,99 Å.

Les hypovanadates MV_3O_7 (M = Ca, Sr, Cd) de type structural CaV₃O₇ apparaissent donc dans le domaine

Tableau 6. Liaisons V-O ou V-(O, F)

$\alpha VOSO_4$	NaV_2O_4F	TeVO₄β	CaV ₃ O ₇		
V–O (Å)	V-(O,F) (Å)	V-O (Å)	V1-O (Å)	V ₂ -O (Å)	
1.63	1,60	1,61	1,59	1,57	
2,04	1,99	2,03	1,96	1,97	
2,04	1,99	2,04	1,96	1,97	
2,04	1,83	1,95	1,97	1,98	
2,04	1,92	1,93	1,95	1.98	

Fig. 5. Variation des paramètres a et c et du volume de la solution solide $Ca_{1-x}Sr_xV_3O_7$.

de la stéréochimie du vanadium(IV) comme des phases originales et importantes.

Références

- AHRENS, F. M. (1952). Geochim. Cosmochim. Acta, 2, 155– 169.
- BOULOUX, J. C. & GALY, J. (1969). Bull. Soc. Chim. Fr. 3, 736-740.
- BOULOUX, J. C., PEREZ, G. & GALY, J. (1972). Bull. Soc. Fr. Minér. Crist. 95, 130-133.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CARPY, A. & GALY, J. (1971). Bull. Soc. Fr. Minér. Crist. 94, 24–29.
- DEDUIT, J. (1961). Ann. Chem. 6, 163-192.
- GALY, J. & BOULOUX, J. C. (1967). C. R. Acad. Sci. Paris, 264, 388-391.
- GALY, J., CASALOT, A., POUCHARD, M. & HAGENMULLER, P. (1966). C. R. Acad. Sci. Paris, 262, 1055–1058.
- GALY, J., DARRIET, J. & HAGENMULLER, P. (1971). Rev. Chim. Minér. 8, 509-522.
- GALY, J. & HARDY, A. (1965). Acta Cryst. 19, 432-435.
- HARDY, A., GALY, J., CASALOT, A. & POUCHARD, M. (1965). Bull. Soc. Chim. Fr. pp. 1056-1065.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210–214.

LONGO, J. M. & ARNOTT, R. J. (1970). J. Solid State Chem. 1, 394-398.

MCMASTER, W. H., KERR DEL GRANDE, N., MALLET, J. H. & HUBBEL, J. H. (1969). National Bureau of Standards Compilation of X-ray Cross Sections UCRL-50174 Sec II Rev. 1.

- MEUNIER, G., DARRIET, J. & GALY, J. (1972). J. Solid State Chem. 5, 314-320.
- PEREZ, G., FRIT, B., BOULOUX, J. C. & GALY, J. (1970). C. R. Acad. Sci. Paris, 270, 952-953.
- REUTER, B. & MÜLLER, K. (1969). Z. anorg. allgem. chem. 368, 174-180.

Acta Cryst. (1973). B29, 275

The Crystal and Molecular Structure of N, N'-Bissalicylidene-1, 5-diamino-3-azapentanedioxouranium(VI)

BY M. N. AKHTAR* AND A. J. SMITH

Department of Chemistry, The University, Sheffield S3 7HF, England

(Received 25 August 1972; accepted 26 October 1972)

The ligand in the title compound is quinquedentate, and gives rise to a 7-coordinate (approximately pentagonal bipyramidal) uranyl complex. The crystal structure is orthorhombic, *Pnma*, with a = 10.50, b = 21.76, and c = 8.025 Å; 716 unique reflexions were observed and the structure was refined to R = 0.069. The deviations of the uranium environment from strict D_{sh} symmetry are discussed, and the ligand geometry is compared with that of its quadridentate (lower) homologue.

Introduction

N,N'-Bissalicylidene-1,5-diamino-3-azapentane (referred to hereafter as saldienH₂) has been shown to act as a planar quinquedentate ligand in its complex with uranium(VI) (Akhtar, McKenzie, Paine & Smith, 1969), although it is only quadridentate with first-row transition metals (McKenzie & Paine, 1969). We now report full details of the crystal and molecular structure of UO₂saldien.

Experimental

UO₂saldien, prepared as described previously (Akhtar et al., 1969; Augustin, Kerrinnes & Langenbeck, 1964), formed orange-yellow prismatic crystals, many of which showed obvious signs of twinning. A single crystal of approximately $0.05 \times 0.15 \times 0.15$ mm was used for obtaining all the following data. Unit cell a =10.50 (1), b = 21.76 (2), c = 8.025 (8) Å; U = 1833.7 Å³; $\rho_o = 2.08 \text{ gcm}^{-3}$, Z=4, $\rho_c = 2.09 \text{ gcm}^{-3}$; space group $Pn2_1a$ or Pnma from absences (k+l=2n+1 for 0kl and lh=2n+1 for hk0); Pnma chosen and confirmed by subsequent successful refinement. 716 unique non-zero reflexions were measured visually from precession films hk0 to hk3 and h0l to h6l obtained with Mo Ka radiation ($\mu = 108.5 \text{ cm}^{-1}$). The usual Lorentz and polarization corrections were applied as were absorption corrections by the method of Busing & Levy (1957).

The structure was solved by normal heavy-atom Patterson and difference Fourier methods, and refined by block-diagonal and later by full-matrix least-squares calculations. All atoms except the hydrogens were located and refined with isotropic thermal vibration

Table 1. Atomic fractional coordinates $(\times 10^4)$ and isotropic thermal parameters (Å²) with e.s.ds. in parentheses

	<i>x</i> / <i>a</i>	y/b	z/c	В
U	327 (2)	2500 (0)	651 (2)	3.13 (4)
O(1)	-45 (27)	2500 (d)	2740 (41)	6.5 (8)
O(2)	643 (29)	2500 (0)	- 1348 (43)	7.4 (9)
O(3)	1831 (18)	1786 (10)	1108 (28)	6.1 (5)
N(1)	-2009(28)	2500 (0)	134 (43)	4.5 (7)
N(2)	-589(22)	1384 (12)	84 (33)	6.1 (6)
C(1)	-2550 (35)	1965 (16)	- 692 (54)	8.7 (10)
C(2)	- 2045 (28)	1376 (16)	98 (44)	6.3 (8)
C(3)	19 (26)	950 (13)	- 337 (36)	5.1 (7)
C(4)	1353 (28)	904 (15)	-417 (42)	6.0 (7)
C(5)	1884 (27)	345 (13)	-1119 (37)	5.1 (7)
C(6)	3139 (28)	253 (14)	-1263 (39)	5.6 (7)
C(7)	4039 (32)	650 (15)	- 629 (46)	6.7 (8)
C(8)	3593 (32)	1192 (15)	201 (41)	6.0 (8)
C(9)	2268 (27)	1289 (13)	264 (37)	4.6 (6)
H(1)	- 2270	2500	1345	6.5
H(2)	-2291	1974	- 1940	10.7
H(3)	- 3568	1977	- 579	10.7
H(4)	-2377	988	- 604	8.3
H(5)	-2380	1342	1357	8.3
H(6)	- 510	551	- 692	7.1
H(7)	1218	15	- 1634	7.1
H(8)	3486	-159	- 1869	7.6
H(9)	5050	555	- 707	8.7
H(10)	4259	1523	716	8·0

^{*} Present address: Department of Chemistry, The University, Lahore, W. Pakistan.